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SUMMARY & CONCLUSIONS 

  The application of increasingly higher level of autonomy 

for safety critical systems is inevitable.   Ensuring the 

reliability of such systems requires managing the 

uncertainties that occur due to the increased autonomy.    Our 

research indicates the increased uncertainty in autonomous 

software is due to increased discontinuities in the state space 

and inadequate situational awareness.   

 

This paper summarizes key findings related to methods for 

the risk considerations of autonomy software.  Existing 

methods for Verification and Validation (V&V) of autonomy 

software are summarized and a method for the assurance of 

autonomy software is suggested and demonstrated on a 

command execution use case.  Risk and reliability are 

defined in the context of autonomy and an approach for risk 

assessment of autonomy is presented using an example use 

case.  Key insights regarding areas of uncertainty for 

autonomy are provided, along with a suggested architecture 

for the systematic consideration of reliability within the 

context of a given autonomous planner.   

1. INTRODUCTION  

  The last decade has seen an extensive amount of research 

and development in the area of autonomous software and 

systems.  The advances in this field have been driven by new 

technologies in sensors and actuators, computing, control 

theory, modeling and simulation and systems design and 

engineering.  Due to the breadth of the related disciplines, a 

variety of definitions and classifications have been 

suggested.  This section explains some of these and 

establishes the context for the paper.    

1.1 Definition 

  Boulanin et. al. [1] define autonomy as the ability of a 

machine to execute a task, or tasks, without human input, 

using interaction of computer programming with the 

environment.  They sort out the relative notion of autonomy 

across and within different disciplines into three categories:   

a. The human-machine command and control relationship 

b. The sophistication of the machine’s decision-making 

process 

c. The types of decisions or functions being made 

autonomously 

  Gat [2] defines autonomy software for spacecraft as any 

software that fits into a part of the spacecraft control process 

that would normally involve a human.  Jonsson et. al. [3] 

define the necessary conditions for autonomy to be:  

a. Autonomy describes a range of behaviors associated 

with agents, systems that can sense the world 

around them as well as their own state, can make 

decisions about what to do, and can carry out their 

decisions through their own action. 

b. An autonomous system can be controlled by 

commanding it to achieve a set of goals; the system 

itself transforms the goals into sequences of actions 

that accomplish each goal. 

c. An autonomous system flexibly responds to off-

nominal situations by adjusting its activity sequence 

to attain the high-level goals and maintain system 

safety. 

  Pecheur [7] explains that in its simplest form, autonomy 

software consists in control sequences that allow the 

controlled system to achieve its particular goal while 

tolerating a certain amount of uncertainty in its environment. 

  For the purposes of this paper, we consider as baseline the 

definition provided by Fesq et. al [10].: Autonomy is defined, 

as “making decisions and taking actions, in the presence of 

uncertainty, to execute the mission and respond to internal 

and external changes without human intervention.”  This 

includes the three main steps of perceive, decide and act.   

 

 

 

 

1.2 Classification & Levels of Autonomy 

  Classification schemes and levels have been suggested for 

autonomy software in cars [4], UAV’s [5] and spacecraft [2].  

We consider the three classes of fault protection, 

planning/scheduling and command execution for spacecraft 

Figure 1: Autonomy Definition [10] 

Perceive Decide Act 
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autonomy, as suggested by Clark et al [12].  The levels 

across all these applications are dependent on the degree of 

control of the human operator versus the autonomy software 

with higher levels of autonomy indicating lower levels of 

human control.  A Subject Matter Expert in Artificial 

Intelligence whom we interviewed, Dr. Russel Knight, 

suggested that the level of autonomy is proportionate to the 

number and complexity of decisions being made.  This is 

shown in figure 2.  

 

Figure 2: R. Knight Definition for Levels of Autonomy 

1.3 Verification and Validation (V&V)  

The two main methods for V&V of Autonomy software 

include testing and analysis.  Pecheur [7] describes each 

of them as follow:   

Scenario-Based Testing 

  “Software is embedded in test harness that connects to the 

inputs and outputs of that component, and drives it through a 

suite of test runs. Each test run is an alternated sequence of 

provided inputs and expected outputs, corresponding to one 

scenario of execution of the tested component. An error is 

signaled when the received output does not meet the 

expected one.”  

Analytical Verification  

  “Analytic verification is the branch of software engineering 

concerned with establishing, through some mathematically 

based analysis, that a computer program fulfills a formally 

expressed requirement. Two main approaches to analytic 

verification have been developed: Theorem provers build a 

computer-supported proof of the requirement by logical 

induction over the structure of the program; Model checkers 

Perceive Uncertainties Questions for Software Assurance

What is the underlying model of the system? 

How does the spacecraft maintain situational awareness?

How does the spacecraft update it's state based on its observations?

What are the possible error modes associated with this?

How do we ensure that the system remains safe if the system state is 

not perceived accurately? 

What is the underlying model of the environment used?

How is the command execution dependent on the state of the 

environment?

How does the system update its understanding of the state of the 

enironment?

What are the underlying erroneous states the system can get into?

How do we ensure that the system remains safe if the state of the 

environment is not perceived accurately?

Decide

Execute sequence Correct Execution What are the impediments for the correct execution of sequences? 

Change the order of 

commands in sequence Correctness of new order

How do we determine if the order in which commands are executed 

are safe? 

What are the implications for various orders of commands? 

What is the implication of a wrong sequence?  

How do we ensure the correctenss of the sequence being executed? 

Act

What are the impediments for executing each decision?

Are there interacting sequences involved?

What are the interections?

How could we ensure they interact safely? Execute Decision Ability to execute correctly 

System State Level of accuracy

Environment Level of accuracy

Change sequence 

completely correctness of new sequence 

Table 1: Risk Identification for Command Execution 
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search all realizable executions of the program for a violation 

of the requirement. “ 

  He concludes that because of the internal complexity of 

autonomous controllers, and the huge range of situations that 

they can potentially address, scenario-based testing provides 

a very limited coverage. Model checking can help to find the 

concurrency problems that would be overlooked in testing, 

and fix them earlier in the development and thus at a cheaper 

cost. 

2. RISK CONSIDERATIONS  

  Risk is defined as a triplet <What can go wrong?, What is 

the likelihood?, What is the consequence?>[7].  By applying 

this definition to autonomy risk, we derive the triplet: <What 

can go wring due to Autonomy?, What is its likelihood?, 

What is its consequence?>.  Similarly, system unreliability 

due to autonomy can be defined as the occurrence of an 

unreliable state for the system due to autonomy.    

2.1     Risk Identification  

  Our suggested approach for risk identification for 

autonomous systems is to determine the key perceptions, 

decisions and actions involved, their corresponding 

uncertainties and questions that can help to identify the risks 

and unsafe states associated with those uncertainties.   We 

demonstrate this approach using command execution as our 

use case for a class of autonomy.   

2.2 Use Case: Command Execution  

  The first column in Table 1 includes a set of perceptions, 

decisions and actions that a given command execution 

software conducts.  The second column high-lights some of 

the uncertainties involved in these decisions and based on 

these uncertainties the third column identifies questions that 

are addressed for software assurance purposes.  In our 

example, the system perceives the state of the spacecraft as 

well as the state of the environment.  It then decides to 

execute a given sequence, change the order of commands in 

the sequence or change the sequence completely and in each 

of these cases there’s uncertainty about the correctness of the 

sequence and its corresponding order of commands.   The 

action taken is the execution of the decision.  The key 

uncertainty involved in the perception of the system state is 

the level of accuracy of this perception.  To determine the 

hazards and possible failure modes that could lead to an 

unsafe system state as a result of this uncertainty,  some of 

the questions that arise are about the underlying system 

model, the situational awareness of the spacecraft, the 

method it uses to update its state based on its observations, 

the possible error modes associated with it, and finally 

probing into the method that the system uses to stay safe if 

the system state is not perceived accurately.   The expectation 

is for this method to be used to facilitate discussions between 

software developers and software assurance managers for the 

purposes of identifying and managing the risks associated 

with autonomous software.    

2.3. Distinguishing Features 

  The increased uncertainty in autonomous software is due to 

increased discontinuities in the state space and decreased 

situational awareness.    

  In non-autonomous control systems, there are typically a 

sequence of activities or scenarios that are implemented.  

Autonomous software can jump between sequences in 

satisfying goals. Even though this behavior is still in 

existence for non-autonomous software, the scope of the 

behavior increases for autonomous software.  Therefore, 

there’s less determinism in the state of the software for 

autonomous software than there is for non-autonomous 

software.  The risk posed by this can be mitigated by 

additional V&V of the software.   

    

Autonomy
output

Fish boat

Tank

16%

70%

14%

Passenger boat

Object Action

Fish boat Go away

Passenger 

boat

Go away

Tank Bomb

bo
m

b

Go away

Civilian 

fatalities

Destroy

enemy

Avoid 

conflict

Miss enemy

target

Decision Model

Figure 3: Example Object Detection and Decision Making by Earth Orbiting Satellite 
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Situational Awareness 

One of the most cited models of situational awareness has 

been suggested by Endsley M. [14].  In this model, 

situational awareness is defined as the perception of 

environmental elements and events with respect to time or 

space, the comprehension of their meaning, and the 

projection of their future status. 

Situational awareness has been recognized as a critical, yet 

often elusive, foundation for successful decision-making 

across a broad range of situations.  Lacking or inadequate 

situational awareness has been identified as one of the 

primary factors in accidents attributed to human error [15].   

The situational awareness of an autonomous system is 

different as compared to humans.  In the case of autonomy 

for space applications, the knowledge required for 

comprehending the perceptions and projecting into the future 

may be difficult to anticipate and code into the system a 

priori as there is uncertainty about the environment.  This 

poses a risk which is typically mitigated by initially including 

the ground teams in the loop and gradually increasing the  

 

 

level of autonomy, for instance, in the case of the Mars 

rovers [16].   

 

2.4    Risk Analysis Use Case  

  Sugawara [8] presents an example of an earth observing 

satellites that detects ships and identifies the type of ship as a 

fish boat (with a likelihood of 16%), a passenger boat (14% 

likely) and a tank (70% likely) of the type.  They suggest that 

if the detection is incorrect, it could lead to a failure.  

  We elaborate on this example by assuming a decision model 

for this satellite where if the object is a fish boat or a 

passenger boat, the satellite goes away but if it is a tank, it 

bombs the tank.  As seen on the right-hand side of Figure 3, 

the decision is to either bomb or to go away.  If it bombs, 

there’s a chance that there may be civilian fatalities if in fact 

it were a fish boat or a passenger boat.  If the object was a 

tank, then the decision is correct and the enemy has been 

destroyed.  If the satellite makes the decision to go away, 

then if it were a fish boat or a passenger boat, it has made the 

correct decision and avoided conflict.  If, however, it was 

actually a tank, then it has missed the enemy target.   

Planner

Ground 
Sequence

System State

Environment

V&V 
Engine 

System 
Level 

Reliability

Final
Plan

{p1,…pn}

pi
R(pi)

BBN Model
pi

Relevant Failure Modes
Expected Likelihood of 
failure

Figure 4: Proposed Architecture for Incorporating System Reliability into V&V Considerations 
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  Considering the three elements of risk, we can assess the 

risk associated with the autonomous object detection and 

decision making as follow:  

1. What can go wrong?  It can make the wrong 

decision 

2. What is the likelihood of making the wrong 

decision?  

  Using the Law of Total Probability, we find the likelihood 

of an incorrect decision as follows: 

P (incorrect decision) = P (incorrect decision| select fish 

boat) x P (select fish boat) + P (incorrect decision | select 

passenger boat) x P (select passenger boat) +P (incorrect 

decision |select tank) x P (select tank)  

  Let’s assume that the Decision Maker has much higher 

value for not missing a tank than for accidentally bombing a 

fish boat or passenger boat so decides to bomb the object 

with this given probability distribution.  

P (incorrect decision) = P (incorrect decision| select tank) * 

1= P (not being tank| 70% tank prior likelihood) 

3. What is the consequence?  Civilian casualties 

associated with the fish boat or passenger boat. 

3.  SYSTEM LEVEL RELIABILITY  

  Software reliability is defined as the probability of failure-

free software operation for a specified period of time in a 

specified environment [13].  Software has a greater level of 

decision-making authority in autonomous software and these 

decisions may lead to system level unreliability even in the 

absence of software faults.  System reliability is time 

dependent and even though decisions that cause higher levels 

of system degradation may appear optimal in the short term, 

they could prevent the system from achieving its goals over 

the entire life cycle of the mission.    

  While stochastic modeling methods for the determination of 

the optimal sequence of activities to be performed by a rover 

on Mars have been developed [9], they do not address the 

overarching system unreliability caused by autonomy 

software.  Typically, on Mars rovers, there are safety 

constraints that need to be met.  These constraints ensure that 

the rover does not run out of power or make any movements 

that lead to damage of the hardware.  These constraints are 

binary – the rover action is either deemed safe or unsafe.  

Reliability, however, is a likelihood and therefore can have a 

range of values in the interval [0,1].  Each course of action 

takes a given toll on the reliability of the rover and has 

different implications for its performance over time.  For 

instance, one action may cause a larger degradation in the 

wheels than another.  Or one course of action may require a 

more complex software procedure than another and hence an 

increased likelihood of error.   

  We therefore propose an architecture that takes into 

account, not just the autonomy software, but the system in 

which the autonomy software is operating.   This proposed 

architecture is shown in Figure 4 and the context is an 

autonomous planner.   

  As seen in this figure, the planner takes as input the system 

state, ground sequence and the information obtained from its 

sensors regarding the environment.  Based on these inputs, it 

generates a set of plans.  These plans are run through the 

V&V engine to test it for completeness and optimality.    A 

complete plan is a plan that satisfies all the necessary 

constraints in terms of the activities that the rover needs to 

perform in order to be safe.  An optimal plan is one that can 

achieve all the activities with the least amount of resources.  

This plan can then be assessed to determine how it affects the 

system reliability.  The system Reliability, which is 

nominally shown using a Bayesian Belief Network (BBN) 

model assesses the risks involved for the system for a given 

plan and their expected likelihood of occurrence.  Based on 

this assessment, the plan may or may not satisfy the 

reliability constraints for the system.  If not, there is a need 

for another iteration between the planner and the V&V 

engine until a plan is developed which is not only complete 

and optimal but also safe.  That is the final plan.   

4. RISK MANAGEMENT 

  The Continuous Risk Management Process used at NASA 

is shown in Figure 5 [11].  This process entails the 

identification, analysis, planning, tracking and control of 

risks.    We have explored several methods for risk 

identification for autonomy software.  The approach 

explained in section 3 calls for deliberating on the 

perceptions, decisions and actions that are taken by the 

autonomous system and software and the uncertainties 

associated with them. Another approach for identifying the 

risks is to deliberate on the key areas of uncertainty 

associated with autonomy software, in terms of the non-

determinisms in the state space and the situational awareness 

of the autonomous system.  Two methods for the analysis of 

these risks has also been suggested.  One method is finding 

the likelihood and consequence of the risk elements 

identified.  This is demonstrated with a use case in section 4.  

Another method is to determine the system level reliability of 

the system that is operating with autonomy software.  Once 

the risks are identified and analyzed, the risk engineers or 

managers can use this information for planning purposes.  

This planning would involve making decisions about whether 

or not the risks are acceptable and finding an approach for 

mitigating or reducing the likelihood or consequence of these 

risks.  One approach for mitigating the risks is to use testing 

or analytical model checking techniques, as suggested in 

section 2.  Tracking and controlling the risks is an ongoing 

activity that is performed over the lifecycle of the 

autonomous software and system.  
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Figure 5: NASA Continuous Risk Management – NPR 8000.4B 

5. SUMMARY & CONCLUSIONS 

  In this paper, we have provided an overview of autonomy 

software, in terms of how it is defined, classified and the 

methods used for its verification and validation. Using the 

definition for autonomy and some of its distinguishing 

features, we have suggested methods for identifying risks 

related to autonomous system. We have further extended the 

definition of risk and reliability to autonomy software and 

suggested an approach for risk assessment of autonomous 

software and an architecture for the consideration of system 

level reliability implications of autonomy software.  The risk 

assessment is demonstrated using an example use case.  

Finally, each of the proposed methods and the connection 

between them are clarified in the context of the NASA 

Continuous Risk Management Process.   
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